Long geodesics in subgraphs of the cube
نویسندگان
چکیده
We show that any subgraph of the hypercube Qn of average degree d contains a geodesic of length d, where by geodesic we mean a shortest path in Qn. This result, which is best possible, strengthens a theorem of Feder and Subi. It is also related to the ‘antipodal colourings’ conjecture of Norine.
منابع مشابه
Geodesic trajectories on regular polyhedra
Consider all geodesics between two given points on a polyhedron. On the regular tetrahedron, we describe all the geodesics from a vertex to a point, which could be another vertex. Using the Stern– Brocot tree to explore the recursive structure of geodesics between vertices on a cube, we prove, in some precise sense, that there are twice as many geodesics between certain pairs of vertices than o...
متن کاملReconstruction Conjecture for Graphs Isomorphic to Cube of a Tree
This paper proves the reconstruction conjecture for graphs which are isomorphic to the cube of a tree. The proof uses the reconstructibility of trees from their peripheral vertex deleted subgraphs. The main result follows from (i) characterization of the cube of a tree (ii) recognizability of the cube of a tree (iii) uniqueness of tree as a cube root of a graph G, except when G is a complete gr...
متن کاملSymmetric Geodesics on Cubes: Algorithms for Finding Them
An algorithm is presented for finding simple closed symmetric geodesics on the boundary of an n-cube.
متن کاملThe Phase Transition for Random Subgraphs of the n-cube
We describe recent results, obtained in collaborations with C. Borgs, J.T. Chayes, R. van der Hofstad and J. Spencer, which provide a detailed description of the phase transition for random subgraphs of the n-cube. Résumé. Nous présentons des résultats récents qui donnent une description détaillée de la transition de phase des sous-graphes aléatoires du n-cube. Ces résultats sont obtenus en col...
متن کاملHighly Symmetric Subgraphs of Hypercubes
Two questions are considered, namely (i) How many colors are needed for a coloring of the n-cube without monochromatic quadrangles or hexagons? We show that four colors suffice and thereby settle a problem of Erdos. (ii) Which vertex-transitive induced subgraphs does a hypercube have? An interesting graph has come up in this context: If we delete a Hamming code from the 7-cube, the resulting gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 326 شماره
صفحات -
تاریخ انتشار 2014